Solar Evaluation Committee

Report to the Master Planning Committee 9 December 2015

Solar Energy for Kendal?

Why? What? Where? When? How Much?

To Do Our Part in Making Oberlin Green

Kendal's Annual Electric Bill \$463,090.01 (July 2014-June 2015)

Kendal's Average Electric Usage 4,809,600 Kilowatt-Hours per year 400,800 Kilowatt-Hours per month 13,228 Kilowatt-Hours per day

What?

Focus on Solar Electric 30% Tax Credit Good Until December 2016 4.1 Kilowatt-Hours per square-meter per day Photovoltaic Solar Collectors 5,800 square meters (13,228/4.1*1.8)

Where? to put 5,800 square meters

When?

30% Federal Tax Credit Expires December 2016 Contract Time **2** Months **Design and Build Time 9** Months **Need Board Decision by January 2016**

How Much?

- Ground Arrays
- Rooftop Arrays
- Canopy Arrays
- Storage

\$2,000 per KW \$3,000 per KW \$4,500 per KW \$3,500 per KW

• 500KW Array

\$1,500,000

Payback Vendor Estimate

A Closer Look At The Data

Why?

What?

Where?

When?

How Much?

Why?

- We Don't Need Solar For Green Electricity
- Our Electricity Is Relatively Cheap
- Solar Doesn't Produce When We Need It But Storage Technology Isn't Ready Yet
- We Don't Know How Much We Need

Oberlin Municipal Light and Power

- 87% Renewable Energy Now
- 90% By Next Year

- Kendal Uses About 5% of OMLPS Power
- They Can't Use Our Excess Power, Especially When Their Demand Is Low

Cost of Electricity Vendor Estimate vs. OMLPS

Expected Energy Use

HVAC

Solar Radiation

Daily Energy Use

One Day?

Monthly Energy Use vs. Availability

Tilt For Need?

Demand Cost vs. Use Cost

- Use Cost
 - Average \$0.086 per KWh
 - Annual \$344,291 plus taxes
- Peak Demand Cost

- Price \$8.69 per 15min peak/Month KW
- Annual \$101,047 plus taxes

Peak Demand vs. Average

We Don't Know Our Energy Use

- Reductions In Progress
 - Insulation Upgrades
 - Ground Source Heat Pumps
 - Energy Management Upgrades
- Duration of Electric Use Peaks
- Causes of Electric Use Peaks

Energy Storage

- Lead-Acid Battery Technology

 Not Worth Having
- Lithium-Halide Technology – Not Available In Our Time Frame?
- Water Storage
 - 40ft diameter 100ft high tower per 100KWh
- How Much Is Enough?
 - Data Not Available to Decide

What? And Where?

We Can Use A Mix Of Arrays
– Ground, Roof or Canopy

- Solar Arrays Will Be In Somebody's View
- Getting The Power Where It is Needed Is Both Inefficient and Expensive
- Fences Are Needed For Ground Arrays

View Isn't Green

Power Distribution

Other Financial Factors

- Construction Cost Overruns
- Operation and Maintenance Costs
- Equipment Replacement Reserve
- Sale of Renewable Energy Credits
- Third Party Lease Profits

More Realistic Payback

When?

- Time Is Short For Funding \$1.5M
 - What about \$500K or \$100K
 - Solar Augmentation For Emergency Power
- Can't Integrate Into Garage Plans by 2016

Where to Go From Here?

- Gather Energy Use Data For A Year
- Track Solar and Storage Technology
- Look at Solar Water Preheat
 - Domestic Hot Water Most Promising
 - No Time Constraint
 - Green vs. Gas